31 research outputs found

    Human and Biological Skin-Inspired Electronic Skins for Advanced Sensory Functions and Multifunctionality

    Get PDF
    Department of Energy Engineering (Energy Engineering)The electronic skin (e-skin) technology is an exciting frontier to drive next generation of wearable electronics owing to its high level of wearability to curved human body, enabling high accuracy to harvest information of users and their surroundings. Altough various types of e-skins, based on several signal-transduction modes, including piezoresistive, capacitive, piezoelectric, triboelectric modes, have been developed, their performances (i.e. sensitivity, working range, linearity, multifunctionality, etc.) should be improved for the wearable applications. Recently, biomimicry of the human and biological skins has become a great inspiration for realizing novel wearable e-skin systems with exceptional multifunctionality as well as advanced sensory functions. As an ideal sensory organ, tactile sensing capabilities of human skin was emulated for the development of e-skins with enhanced sensor performances. In particular, the unique geometry and systematic sensory system of human skin have driven new opportunities in multifunctional and highly sensitive e-skin applications. In addition, extraordinary architectures for protection, locomotion, risk indication, and camouflage in biological systems provide great possibilities for second skin applications on user-interactive, skin-attachable, and ultrasensitive e-skins, as well as soft robots. Benefitting from their superior perceptive functions and multifunctionality, human and biological skins-inspired e-skins can be considered to be promising candidates for wearable device applications, such as body motion tracking, healthcare devices, acoustic sensor, and human machine interfaces (HMI). This thesis covers our recent studies about human and biological skin-inspired e-skins for advanced sensory functions and multifunctionality. First, chapter 1 highlights various types of e-skins and recent research trends in bioinspired e-skins mimicking perceptive features of human and biological skins. In chapter 2, we demonstrate highly sensitive and tactile-direction-sensitive e-skin based on human skin-inspired interlocked microdome structures. Owing to the stress concentration effect, the interlocked e-skin experiences significant change of contact area between the interlocked microdomes, resulting in high pressure sensitivity. In addition, because of the different deformation trends between microstructures in mutual contact, the interlocked e-skin can differentiate and decouple sensor signals under different directional forces, such as pressure, tensile strain, shear, and bending. In chapter 3, interlocked e-skins were designed with multilayered geometry. Although interlocked e-skin shows highly sensitive pressure sensing performances, their pressure sensing range is narrow and pressure sensitivity continuously decreases with increasing pressure level. The multilayer interlocked microdome geometry can enhance the pressure-sensing performances of e-skins, such as sensitivity, working range, and linearity. As another approach of e-skin with multilayered geometry, we demonstrate multilayered e-skin based on conductivity-gradient conductive materials in chapter 4. The conducive polymer composites with different conductivity were coated on the microdome pattern and designed as interlocked e-skin with coplanar electrode design, resulting in exceptionally high pressure-sensing performances compared with previous literatures. In chapter 5, inspired by responsive color change in biological skins, we developed mechanochromic e-skin with a hierarchical nanoparticle-in-micropore architecture. The novel design of hierarchical structure enables effective stress concentration at the interface between nanoparticle and porous structure, resulting in impressive color change under mechanical stimuli. In chapter 6, we emulate ultrahigh temperature sensitivity of human and snake skin for temperature-sensitive e-skin. The thermoresponsive composite based on semi-crystalline polymer, temperature sensor shows ultrahigh temperature sensitivity near the melting point of semi-crystalline polymer. In addition, integration of thermochromic composite, mimicking biological skins, enables dual-mode temperature sensors by electrical and colorimetric sensing capabilities. Finally, in chapter 7, we summarize this thesis along with future perspective that should be considered for next-generation e-skin electronics. Our e-skins, inspired by human and biological skin, can provide a new paradigm for realizing novel wearable electronic systems with exceptional multifunctionality as well as advanced sensory functions.clos

    Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones

    Get PDF
    We demonstrate ultrathin, transparent, and conductive hybrid nanomembranes (NMs) with nanoscale thickness, consisting of an orthogonal silver nanowire array embedded in a polymer matrix. Hybrid NMs significantly enhance the electrical and mechanical properties of ultrathin polymer NMs, which can be intimately attached to human skin. As a proof of concept, we present a skin-attachable NM loudspeaker, which exhibits a significant enhancement in thermoacoustic capabilities without any significant heat loss from the substrate. We also present a wearable transparent NM microphone combined with a micropyramid-patterned polydimethylsiloxane film, which provides excellent acoustic sensing capabilities based on a triboelectric voltage signal. Furthermore, the NM microphone can be used to provide a user interface for a personal voice-based security system in that it can accurately recognize a user???s voice. This study addressed the NM-based conformal electronics required for acoustic device platforms, which could be further expanded for application to conformal wearable sensors and health care devices

    A Triple-Mode Flexible E-Skin Sensor Interface for Multi-Purpose Wearable Applications

    Get PDF
    This study presents a flexible wireless electronic skin (e-skin) sensor system that includes a multi-functional sensor device, a triple-mode reconfigurable readout integrated circuit (ROIC), and a mobile monitoring interface. The e-skin device's multi-functionality is achieved by an interlocked micro-dome array structure that uses a polyvinylidene fluoride and reduced graphene oxide (PVDF/RGO) composite material that is inspired by the structure and functions of the human fingertip. For multi-functional implementation, the proposed triple-mode ROIC is reconfigured to support piezoelectric, piezoresistance, and pyroelectric interfaces through single-type e-skin sensor devices. A flexible system prototype was developed and experimentally verified to provide various wireless wearable sensing functions-including pulse wave, voice, chewing/swallowing, breathing, knee movements, and temperature-while their real-time sensed data are displayed on a smartphone

    Flying Cross-Border To Entrepreneurs: Business Angels In Croatia And Slovenia

    Get PDF
    The signifi cant expansion of business formation is playing a key role in the transformation of transitional economies. As a result of this and, the development of more entrepreneurial business culture, the role of endogenous venture capital, equity market provision, and the potential for business angels involvement is also growing. Despite these entrepreneurially driven developments, and the encouragement of individuals to establish new businesses, start-up companies in Croatia and Slovenia, they are facing the immediate issue of raising capital. Th is paper undertakes a comparative analysis of business angels in Croatia and Slovenia as part of they represent a key part of the response and solution to this problem. Their primary motivation is capital growth, and they seek to fi ll an equity gap and compensate for failures in the venture capital market wherever they appear. Th e study documents the current state of business angel activity and networking within the private equity market in Croatia and Slovenia, based on interviews and case studies. Th erefore, it informs the analysis of key functions that business angels can play in addressing problems faced by new small businesses in an emergent economic and investment environment

    Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors

    No full text
    When semiconducting nanostructures are combined with noble metals, the surface plasmons of the noble metals, in addition to the charge transfer interactions between the semiconductors and noble metals, can be utilized to provide strong surface plasmon effects. Here, we suggest a particle-film plasmonic system in conjunction with tapered ZnO nanowire arrays for ultrasensitive SERS chemical sensors. In this design, the gap plasmons between the metal nanoparticles and the metal films provide significantly improved surface-enhanced Raman spectroscopy (SERS) effects compared to those of interparticle surface plasmons. Furthermore, 3D tapered metal nanostructures with particle-film plasmonic systems enable efficient light trapping and waveguiding effects. To study the effects of various morphologies of ZnO nanostructures on the light trapping and thus the SERS enhancements, we compare the performance of three different ZnO morphologies: ZnO nanocones (NCs), nanonails (NNs), and nanorods (NRs). Finally, we demonstrate that our SERS chemical sensors enable a molecular level of detection capability of benzenethiol (100 zeptomole), rhodamine 6G (10 attomole), and adenine (10 attomole) molecules. This work presents a new design platform based on the 3D antireflective metal/semiconductor heterojunction nanostructures, which will play a critical role in the study of plasmonics and SERS chemical sensors.close0

    Mimicking Human and Biological Skins for Multifunctional Skin Electronics

    No full text
    Electronic skin (e-skin) technology is an exciting frontier to drive the next generation of wearable electronics owing to its high level of wearability, enabling high accuracy to harvest information of users and their surroundings. Recently, biomimicry of human and biological skins has become a great inspiration for realizing novel wearable electronic systems with exceptional multifunctionality as well as advanced sensory functions. This review covers and highlights bioinspired e-skins mimicking perceptive features of human and biological skins. In particular, five main components in tactile sensation processes of human skin are individually discussed with recent advances of e-skins that mimic the unique sensing mechanisms of human skin. In addition, diverse functionalities in user-interactive, skin-attachable, and ultrasensitive e-skins are introduced with the inspiration from unique architectures and functionalities, such as visual expression of stimuli, reversible adhesion, easy deformability, and camouflage, in biological skins of natural creatures. Furthermore, emerging wearable sensor systems using bioinspired e-skins for body motion tracking, healthcare monitoring, and prosthesis are described. Finally, several challenges that should be considered for the realization of next-generation skin electronics are discussed with recent outcomes for addressing these challenges

    Bio-Inspired Gradient Conductivity and Stiffness for Ultrasensitive Electronic Skins

    No full text
    Hierarchical and gradient structures in biological systems with special mechanical properties have inspired innovations in materials design for construction and mechanical applications. Analogous to the control of stress transfer in gradient mechanical structures, the control of electron transfer in gradient electrical structures should enable the development of high-performance electronics. This paper demonstrates a high performance electronic skin (e-skin) via the simultaneous control of tactile stress transfer to an active sensing area and the corresponding electrical current through the gradient structures. The flexible e-skin sensor has extraordinarily high piezoresistive sensitivity at low power and linearity over a broad pressure range based on the conductivity-gradient multilayer on the stiffness-gradient interlocked microdome geometry. While stiffness-gradient interlocked microdome structures allow the efficient transfer and localization of applied stress to the sensing area, the multilayered structure with gradient conductivity enables the efficient regulation of piezoresistance in response to applied pressure by gradual activation of current pathways from outer to inner layers, resulting in a pressure sensitivity of 3.8 X 10(5) kPa(-1) with linear response over a wide range of up to 100 kPa. In addition, the sensor indicated a rapid response time of 0.016 ms, a low minimum detectable pressure level of 0.025 Pa, a low operating voltage (100 mu V), and high durability during 8000 repetitive cycles of pressure application (80 kPa). The high performance of the e-skin sensor enables acoustic wave detection, differentiation of gas characterized by different densities, subtle tactile manipulation of objects, and real-time monitoring of pulse pressure waveform

    A Multi-Functional Physiological Hybrid-Sensing E-Skin Integrated Interface for Wearable IoT Applications

    No full text
    This paper presents a flexible multi-functional physiological sensing system that provides multiple noise-immune readout architectures and hybrid-sensing capability with an analog pre-processing scheme. The proposed multi-functional system is designed to support five physiological detection methodologies of piezo-resistive, pyro-resistive, electro-metric, opto-metric and their hybrid, utilizing an in-house multi-functional e-skin device, in-house flexible electrodes and a LED-photodiode pair. For their functional verification, nine representative physiological detection capabilities were demonstrated using wearable device prototypes. Especially, the hybrid detection method includes an innovative continuous measurement of blood pressure (BP) while most previous wearable devices are not ready for it. Moreover, for effective implementation in the form of the wearable device, post-processing burden of the hybrid method was much reduced by integrating a proposed analog pre-processing scheme, where only simple counting process and calibration remain to estimate the BP. This multi-functional sensor readout circuits and their hybrid-sensing interface are fully integrated into a single readout integrated circuit (ROIC), which is designed to implement three readout paths: two electrometric readout paths and one impedometric readout path. For noise-immune detection of the e-skin sensor, a pseudo-differential front-end with a ripple reduction loop is proposed in the impedometric readout path, and also state-of-the-art body-oriented noise reduction techniques are adopted for the electrometric readout path. The ROIC is fabricated in a CMOS process and in-house e-skin devices and flexible electrodes are also fabricated

    Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors

    No full text
    The gradient stiffness between stiff epidermis and soft dermis with interlocked microridge structures in human skin induces effective stress transmission to underlying mechanoreceptors for enhanced tactile sensing. Inspired by skin structure and function, we fabricate hierarchical nanoporous and interlocked microridge structured polymers with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors (TESs). The skin-inspired hierarchical polymers with gradient elastic modulus enhance the compressibility and contact areal differences due to effective transmission of the external stress from stiff to soft layers, resulting in highly sensitive TESs capable of detecting human vital signs and voice. In addition, the microridges in the interlocked polymers provide an effective variation of gap distance between interlocked layers without using the bulk spacer and thus facilitate the ultrathin and flexible design of TESs that could be worn on the body and detect a variety of pressing, bending, and twisting motions even in humid and underwater environments. Our TESs exhibit the highest power density (46.7 mu W/cm(2)), pressure (0.55 V/kPa), and bending (similar to 0.1 V/degrees) sensitivities ever reported on flexible TESs. The proposed design of hierarchical polymer architectures for the flexible and wearable TESs can find numerous applications in next-generation wearable electronics
    corecore